JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 25, No. 2, May 2012

A TOPOLOGICAL MINIMAX INEQUALITY WITH $\gamma\text{-}\text{DCQCV}$ AND ITS APPLICATIONS

WON KYU KIM*

ABSTRACT. In this paper, using the γ -diagonally C-quasiconcave condition, we will prove a new minimax inequality in a non-convex subset of a topological space which generalizes Fan's minimax inequality and its generalizations in several aspects.

1. Introduction

Fan's minimax inequality [3] is well-known and has become a versatile tool in nonlinear and convex analysis, and there have been numerous generalizations of Fan's minimax inequality using general concave conditions as in [4-9]. However, a number of generalizations of Fan's minimax inequality and their applications always work only in topological vector spaces, i.e., the linear structure and the continuity are always needed (e.g., see [5,6,8,9]).

In a recent paper [4], the author proved a generalization of Fan's minimax inequality using γ -diagonally C-quasiconcave (simply, γ -DCQCV) condition, which means his minimax inequality works in a topological space without assuming the linear structure.

In this paper, using the γ -DCQCV condition, we will prove a new minimax inequality in a non-convex subset of a topological space which generalizes Fan's minimax inequality and its generalizations in several aspects. As an application, we will prove a basic inequality which is an useful tool for applications in a topological space.

Received December 07, 2011; Revised April 18, 2012; Accepted April 24, 2012. 2010 Mathematics Subject Classification: Primary 52A07.

Key words and phrases: γ -diagonally C-quasiconcave, minimax inequality.

This work was supported by the research grant of the Chungbuk National University in 2011.

Won Kyu Kim

2. Preliminaries

We begin with some notations and definitions. If A is a subset of a vector space, we shall denote by coA the convex hull of A. Denote by $[0,1]^n$ the Cartesian product of n unit intervals $[0,1] \times \cdots \times [0,1]$, and denote the unit simplex in $[0,1]^n$ by Δ_n , and simply denote $\lambda = (\lambda_1, \ldots, \lambda_n) \in \Delta_n$.

In a recent paper [4], the author introduced a general concave condition in a topological space without the linear structure as follows:

DEFINITION 2.1. Let Y be a nonempty subset of a topological space X. Then $f: X \times Y \to \mathbb{R} \cup \{+\infty\}$ is called *diagonally* C-quasiconcave (simply, DCQCV) on Y if for every $n \geq 2$, whenever n points $y_1, \ldots, y_n \in Y$ are given, there exists a continuous function $\phi_n : \Delta_n \to Y$ such that

$$f(\phi_n(\lambda), \phi_n(\lambda)) \ge \min\{f(\phi_n(\lambda_1, \dots, \lambda_n), y_i) \mid i \in J\}$$

for all $\lambda = (\lambda_1, \ldots, \lambda_n) \in \Delta_n$, where $J = \{i \in \{1, 2, \cdots, n\} \mid \lambda_i \neq 0\}$; and f is called γ -diagonally C-quasiconcave (simply, γ -DCQCV) on Y for some $\gamma \in (-\infty, \infty]$ if for every $n \geq 2$, whenever n points $y_1, \ldots, y_n \in Y$ are given, there exists a continuous function $\phi_n : \Delta_n \to Y$ such that

$$\gamma \ge \min\{f(\phi_n(\lambda_1,\ldots,\lambda_n),y_i) \mid i \in J\}$$

for all $\lambda = (\lambda_1, \ldots, \lambda_n) \in \Delta_n$, where $J = \{i \in \{1, 2, \cdots, n\} \mid \lambda_i \neq 0\}$. Similarly, we can define the diagonally *C*-quasiconvex (simply, DCQCX) and γ -diagonally *C*-quasiconvex (simply, γ -DCQCX) conditions for f.

REMARK 2.2. (1) As remarked in [4], in Definition 2.1, when X is a topological vector space, the diagonal quasiconcavity and γ -diagonal quasiconcavity, introduced by Chang-Zhang [5] and Zhou-Chen [6], clearly imply the DCQCV and γ -DCQCV conditions for f, respectively, by letting $\phi_n(\lambda_1, \ldots, \lambda_n) := \lambda_1 x_1 + \cdots + \lambda_n x_n$ for all $\lambda = (\lambda_1, \ldots, \lambda_n) \in \Delta_n$, and $x_1, \ldots, x_n \in X$. Therefore, the γ -DCQCV condition generalizes many previous concave conditions including the quasiconcave, CFconcave, C-concave, diagonally quasiconcave, and γ -diagonally quasiconcave conditions without assuming the linear structure.

(2) When X is a topological vector space and the case X = Y in the above definition, as shown in [4], we can obtain the following implication diagram for general concave conditions, and the converse can not be true in each step:

 $linear \Longrightarrow concave \Longrightarrow quasiconcave \Longrightarrow CF\text{-}concave \Longrightarrow \mathcal{C}\text{-}concave$

 \implies diagonally C-concave \implies diagonally C-quasiconcave

 $\implies \gamma$ -DCQCV

Throughout this paper, all topological spaces are assumed to be Hausdorff, and for the other standard notations and terminologies, we shall refer to [4-7].

3. A non-convex minimax inequality and its applications

Using the γ -DCQCV condition, we will prove a new non-convex minimax inequality in a topological space without assuming the linear structure which is slightly different from Theorem 1 in [4] as follow:

THEOREM 3.1. Let X be a compact topological space, D a nonempty subset of X having more than two points, and let $f, g : X \times X \to \mathbb{R} \cup \{+\infty\}$ be two functions satisfying

(1) for each $(x, y) \in X \times X$, $f(x, y) \leq g(x, y)$;

(2) for each $y \in X$, $x \mapsto f(x, y)$ is lower semicontinuous on X;

(3) for each $x \in X$, $y \mapsto g(x, y)$ is γ -DCQCV on D when $\gamma := \sup_{x \in X} g(x, x);$

(4) for each $y \in X \setminus D$, $f(x,y) \leq \gamma$ for all $x \in D$.

Then the minimax inequality

$$\min_{x \in X} \sup_{y \in X} f(x, y) \le \sup_{x \in X} g(x, x)$$

holds.

Proof. If $\gamma = +\infty$, then we have done so that we may assume that $\gamma < +\infty$. Suppose the contrary, i.e.,

$$\min_{x \in X} \sup_{y \in X} f(x, y) > \sup_{x \in X} g(x, x) = \gamma.$$

Then, for each $x \in X$, there exists an $y \in X$ such that $f(x, y) > \gamma$. For each $y \in X$, we let

$$U(y) := \{ x \in X \mid f(x, y) > \gamma \}.$$

Note that $y \notin U(y)$ since $f(y,y) \leq g(y,y) \leq \gamma$ for all $y \in X$. By the assumption (2), U(y) is (possibly empty) open in X for each $y \in X$, and $X = \bigcup_{y \in X} U(y)$. Since X is compact, there exists a finite set

Won Kyu Kim

 $\{y_1,\ldots,y_n\} \subseteq X$ such that $X = \bigcup_{i=1}^n U(y_i)$. By the coercive assumption (4), we know that for each $y \in X \setminus D$, $U(y) \subset X \setminus D$ so that $\bigcup_{y \in X \setminus D} U(y) \subseteq X \setminus D$ and so $D \subseteq \bigcup_{y \in D} U(y)$. Therefore, by renumbering the indices, we can divide the finite set $\{y_1,\ldots,y_n\}$ into two subsets $\{y_1,\ldots,y_m\} \subset D$ and $\{y_{m+1},\ldots,y_n\} \subset X \setminus D$ such that $D \subseteq \bigcup_{i=1}^m U(y_i)$ and $X = \bigcup_{i=1}^n U(y_i)$. Here we note that $\{y_{m+1},\ldots,y_n\}$ might be an empty set.

Since X is compact, there exists a partition of unity $\{\alpha_1, \dots, \alpha_n\}$ subordinated to the open covering $\{U(y_1), \dots, U(y_n)\}$ of X, i.e.,

$$0 \le \alpha_i(x) \le 1$$
, $\sum_{i=1}^n \alpha_i(x) = 1$ for all $x \in X$, $i = 1, \dots, n$;
and if $x \notin U(y_j)$ for some j , then $\alpha_j(x) = 0$.

For the nonempty finite set $\{y_1, \ldots, y_m\} \subset D$, since g is γ -DCQCV on D, there exists a continuous mapping $\phi_m : \Delta_m \to D$ satisfying the condition

$$\gamma = \sup_{x \in X} g(x, x) \ge \min\{g(\phi_m(\lambda_1, \dots, \lambda_m), y_j) \mid j \in J\}$$
(*)

for all $(\lambda_1, \ldots, \lambda_m) \in \Delta_m$, where $J = \{j \in \{1, 2, \cdots, m\} \mid \lambda_j \neq 0\}.$

For each $x \in D$ $\Big(\subseteq \bigcup_{i=1}^{m} U(y_i)\Big)$, we have $\alpha_j(x) = 0$ for all $j = m + 1, \ldots, n$ so that $\sum_{i=1}^{m} \alpha_i(x) = 1$. Therefore, we can define a continuous map $\alpha : D \to \Delta_m$ by $\alpha(x) := (\alpha_1(x), \cdots, \alpha_m(x))$ for each $x \in D$, and consider a continuous map $\Phi : \Delta_m \to \Delta_m$ defined by

$$\Phi(\lambda) := \alpha \circ \phi_m(\lambda) = \left(\alpha_1(\phi_m(\lambda)), \dots, \alpha_m(\phi_m(\lambda))\right) \text{ for each } \lambda \in \Delta_m.$$

Since ϕ_m and each α_i are continuous, $\Phi : \Delta_m \to \Delta_m$ is continuous on a compact convex set Δ_m . Therefore, by Brouwer's fixed point theorem, there exists a fixed point $\bar{\lambda} = (\bar{\lambda}_1, \dots, \bar{\lambda}_m) \in \Delta_m$ for Φ , i.e.,

$$\Phi(\bar{\lambda}) = \alpha \circ \phi_m(\bar{\lambda}) = \left(\alpha_1(\phi_m(\bar{\lambda})), \dots, \alpha_m(\phi_m(\bar{\lambda}))\right) = (\bar{\lambda}_1, \dots, \bar{\lambda}_m).$$

Here we let $\bar{x} = \phi_m(\bar{\lambda})$, then $\bar{\lambda} = \alpha(\bar{x})$. By the inequality (*), we have

$$\gamma = \sup_{x \in X} g(x, x) \ge \min\{g(\bar{x}, y_j) \,|\, j \in J\} \ge \min\{f(\bar{x}, y_j) \,|\, j \in J\}, \quad (\dagger)$$

where $J = \{j \in \{1, 2, \dots, m\} \mid \overline{\lambda}_j \neq 0\}$. Here we note that for each $j \in J, \ \overline{\lambda}_j \neq 0$ which means $\alpha_j(\overline{x}) \neq 0$. Hence, we have that for

each $j \in J$, $\bar{x} \in U(y_j)$ so that $f(\bar{x}, y_j) > \gamma$. Therefore, from the inequality (†), we have

$$\gamma \geq \min\{g(\bar{x}, y_j) \mid j \in J\} \geq \min\{f(\bar{x}, y_j) \mid j \in J\} > \gamma,$$

which is a contradiction. This completes the proof.

REMARK 3.2. Theorem 3.1 generalizes Fan's minimax inequality [3], minimax inequalities due to Chang-Zhang [5], Kim-Lee [7], Kim [4], Tan [8], and Zhou-Chen [6] in the following aspects:

(a) the function $y \mapsto f(x, y)$ need not be quasconcave, C-concave, γ -DQCV nor diagonally C-concave on X. Indeed, the weaker assumption γ -DCQCV is sufficient.

(b) When X = D in Theorem 3.1, the coercivity assumption (4) is automatically satisfied so that Theorem 3.1 reduces to Theorem 1 [4]. Indeed, in Theorem 1 [4], γ -DCQCV condition should be needed on a compact set D, however, in the above, γ -DCQCV condition is needed on any nonempty subset D of X having more than two points.

Next, we can obtain a generalization of Fan's minimax inequality in a topological vector space as an application of Theorem 3.1.

THEOREM 3.3. Let X be a compact convex subset of a topological vector space, D a nonempty subset of X having more than two points, and let $f: X \times X \to \mathbb{R} \cup \{+\infty\}$ be a function satisfying

(1) for each $x \in X$, $y \mapsto f(x, y)$ is quasconcave on X;

(2) for each $y \in X$, $x \mapsto f(x, y)$ is lower semicontinuous on X;

(3) for each $y \in X \setminus D$, $f(x, y) \leq \sup_{z \in X} f(z, z) = \gamma$ for all $x \in D$; (4) for each $y \in D$, $f(x, y) > \gamma$ for all $x \in X \setminus D$.

Then we have $\min_{x \in X} \sup_{y \in X} f(x, y) \le \sup_{x \in X} f(x, x).$

Proof. If $\gamma = +\infty$, then we have done so that we may assume that $\gamma < +\infty$. In order to apply Theorem 3.1, it suffices to show that for each $x \in X$, $y \mapsto f(x, y)$ is γ -diagonally C-quasiconcave on D. Indeed, in the previous Remark 3.2, we know that quasiconcave condition implies the γ -DCQCV condition. Here, for the completeness, we can give a direct proof by using the well-known Fan minimax inequality. For every $n \geq 2$, let n points $\{y_1, \ldots, y_n\} \subset D$ be given and let $K := co\{y_1, \ldots, y_n\}$ be a compact convex subset of X. Consider the restriction $g = f|_K : K \times K \to \mathbb{R}$ of f on $K \times K$. Then g satisfies the whole assumption of Theorem 1 due to Fan [3] so that we have

$$\min_{x \in K} \sup_{y \in K} g(x, y) \le \sup_{y \in K} g(y, y);$$

Won Kyu Kim

i.e., there exists $x_0 \in K$ such that

$$\sup_{y \in K} g(x_0, y) \le \sup_{y \in K} g(y, y) \le \sup_{y \in X} f(y, y) = \gamma.$$

Therefore, by the assumption (4), $x_0 \in K$ must be an element of D since $K \cap D \neq \emptyset$.

We now define a constant continuous map $\phi_n : \Delta_n \to D$ by $\phi_n(\lambda) := x_0$ for all $\lambda = (\lambda_1, \dots, \lambda_n) \in \Delta_n$. Then, we have

$$\min\{f(\phi_n(\lambda), y_i) \mid i \in J\} \le \sup\{f(x_0, y_i) \mid i \in J\} \le \sup_{y \in K} f(y, y) \le \gamma,$$

where $J = \{j \in \{1, 2, \dots, n\} \mid \lambda_j \neq 0\}$, so that f is γ -diagonally C-quasiconcave on D which completes the proof.

REMARK 3.4. (1) Modifying the proof of Theorem 3.3, we can replace the quasiconcave assumption (1) by the following general concave conditions without affecting the conclusion:

- (a) the linear or concave condition due to von Neumann [10];
- (b) the quasiconcave condition due to Fan [3];
- (c) the C-concave condition due to Kim-Lee [7];
- (d) the diagonally concave condition due to Zhou-Chen [6];

(2) When X = D is compact and convex, then the assumptions (3) and (4) of Theorem 3.3 are automatically satisfied so that the minimax inequality due to Fan [3] is a consequence of Theorem 3.3.

Acknowledgments

The author would like to thank the referee for his valuable suggestions for improvement of the paper.

References

- K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121–126.
- [2] K. Fan, Minimax theorems. Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 42-47.
- [3] K. Fan, A Minimax inequality and applications, In *Inequalities III* (Edited by O. Shisha) Proc. of 3rd Symposium on Inequalities, 103–113, Academic Press, New York, 1972.
- [4] W. K. Kim, Generalized C-concave Conditions and Their Applications, Acta Math. Hungarica 130 (2010), 140–154.
- [5] S.-S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159 (1991), 208–223.

A topological minimax inequality

- [6] J. Zhou and G. Chen, Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities, J. Math. Anal. Appl. 132 (1988), 213–225.
- [7] W. K. Kim and K. H. Lee, On the existence of Nash equilibrium in N-person games with C-concavity, Computers & Math. Appl. 44 (2002), 1219–1228.
- [8] K.-K. Tan, Comparison theorems on minimax inequalities, variational inequalities and fixed point theorems, J. London Math. Soc. 28 (1983), 555–562.
- [9] G.-S. Tang, C.-Z. Cheng and B.-L. Lin, Some generalized Ky Fan's inequalities, *Taiwanese J. Math.* 13 (2009), 239–251.
- [10] J. von Neumann, Zur Theorie der Gesellschaftsspiele, Math. Ann. 100 (1928), 295–320.

*

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: wkkim@chungbuk.ac.kr